Emiko Koyama, Hideo Tokuhisa, Yoshinobu Nagawa, Gang Yang, and Kazuhisa Hiratani*

Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan
Received August 6, 2001

Abstract

Novel macrocyclic bis(phenylbenzoxazole) derivatives were easily synthesized from macrocyclic isobutenyl bis(amide-ether)s by tandem Claisen rearrangement and subsequent intramolecular cyclization of the amide-phenol intermediates. The position of substitution of the oligoethylene glycol moiety on the phenylamido groups of the macrocycles did not have a large effect on the yields of the bis(benzoxazole)s for the meta and para derivatives. The fluorescence quantum yields of most of the macrocyclic bis(benzoxazole)s were lower than those of the corresponding nonmacrocyclic bis(benzoxazole) model compounds. The quantum yields of the para-substituted macrocyclic bis(benzoxazole)s were clearly lower than those of the model compounds and decreased with increasing length of the oligoethylene chain.

J. Heterocyclic Chem., 38, 1353 (2001).

Much attention has been paid to benzoxazoles because they have a number of optical applications; they have been used as optical luminescents [1], whitening agents [2], and laser dyes [3]. Benzoxazoles also have other important uses; for example, they can serve as intermediates for organic syntheses [4] and as therapeutic materials [5].

The Claisen rearrangement has attracted interest because of its extensive applications for organic synthesis. The possibility for tandem Claisen rearrangement, that is, transposition at two reaction centers, extends the reaction's usefulness even further [6]. We have recently found that isobutenyl bis(aryl ether) derivatives are easily converted to compounds having two phenolic hydroxy groups via tandem Claisen rearrangement [7]. Furthermore, we have demonstrated that some noncyclic isobutenyl bis(aryl ether)s having amide groups at the ortho position $\mathbf{1}$ are easily converted to bis(benzoxazole)s 2 by heating and that the reaction proceeds via tandem Claisen rearrangement (Scheme 1) [8,9].
In this paper, we demonstrate a successful synthetic application of tandem Claisen rearrangement for a series
of macrocyclic bis(phenylbenzoxazole) derivatives binding oligoethylene glycol at the ortho, meta, or para positions of the phenylamido groups of the macrocycles, and we investigate the effect of positional substitution on the fluorescence.

The series of macrocyclic bis(amide-ether)s $\mathbf{4 a}-\mathbf{4 i}$ shown in Scheme 2 was prepared as follows: First, 1,3-bis(2-amino-4-methylphenoxy)-2-methylenepropane hydrochloride was prepared by a method involving a pro-tection-deprotection process: 4-methyl-2-aminophenol was treated with benzaldehyde to form 4-methyl-2iminophenol, which was then etherified with 3-chloro-2-(chloromethyl)-1-propene in the presence of NaH in dry dimethylformamide (DMF) and deprotected with 12 N aqueous HCl in chloroform. Next, macrocyclic bis(amide-ether)s 4a-4i were prepared: 1,3-bis(2-amino-4-methylphenoxy)-2-methylenepropane hydrochloride was treated with $o-$, m-, or p-acetoxybenzoyl chloride in the presence of pyridine in dry DMF at 0 for 30 minutes and $20^{\circ} \mathrm{C}$ for 3 hours, and the resulting intermediates were

hydrolyzed in 1 N NaOH aqueous solution for 12 hours at room temperature. Finally, the bisphenol derivatives were treated with oligoethylene glycol ditosylate in the presence of potassium carbonate in dry DMF at $70^{\circ} \mathrm{C}$ for 3 days(Scheme 2).

5 was carried out by silica gel column chromatography (eluent: 5:1 chloroform:ethyl acetate). The results for the rearrangements are summarized in Table 1.

The ortho-substituted macrocyclic bis(benzoxazole)s $\mathbf{5 a}-\mathbf{5 c}$ were not obtained in satisfactory yields (yields of

Scheme 2

The bulk rearrangement of meta- and para-substituted macrocycles $\mathbf{4 d}-\mathbf{4 i}$ was carried out at $230-240{ }^{\circ} \mathrm{C}$ for $5-7$ hours under vacuum. The heating of o-substituted macrocycles $\mathbf{4 a - 4 c}$ at $240^{\circ} \mathrm{C}$ for 7 hours gave the complex mixture of the corresponding 5, the intermediates, and other decomposed compounds. So, the thermal reaction of $4 \mathbf{a}-\mathbf{4 c}$ was carried out under milder conditions (at $210^{\circ} \mathrm{C}$), which required more than 2 days to complete. The rearrangement of ortho-substituted macrocycles $\mathbf{4 a}-\mathbf{4 c}$ proceeded very slowly compared with the rearrangements of the meta- and para-substituted macrocycles $\mathbf{4 d}-\mathbf{4 i}$. Previously, we studied the rearrangement of nonmacrocyclic bis(amide-ether)s 1a-1c, which have methoxy groups at the ortho, meta, or para positions of the phenyl groups (Scheme 1) [9]. We observed a large difference in the rate of the thermal reaction among the nonmacrocyclic compounds $\mathbf{1 a}-\mathbf{1 c}$: the rearrangements of the meta and para compounds $\mathbf{1 b}$ and $\mathbf{1 c}$ were complete within 24 hours at $180^{\circ} \mathrm{C}$, whereas the rearrangement of 1a needed heating at $210{ }^{\circ} \mathrm{C}$ for 4 days. We concluded that the rate difference was caused by the hydrogen-bonding interaction between the oxygen of the methoxy group at the ortho position and the OH group in the bis(amide-phenol) generated by the tandem Claisen rearrangement of 1a, effectively inhibiting subsequent intramolecular cyclization to the corresponding nonmacrocyclic bis(benzoxazole) 2a. This might also be the case for the macrocyclic system. The purification of

Table 1
Rearrangement of $\mathbf{1 a - 1 \mathbf { c }}$ and $\mathbf{4 a - 4 i}[\mathrm{a}$]

Run	Compound	Time (h)	Temp $\left({ }^{\circ} \mathrm{C}\right)$	Yield of $\mathbf{2}(\mathbf{3})$ or $\mathbf{5}(\%)$
1	$\mathbf{4 a}$	48	210	20
2	$\mathbf{4 b}$	48	210	38
3	$\mathbf{4 c}$	48	210	16
4	$\mathbf{4 d}$	5	240	72
5	$\mathbf{4 e}$	5	240	71
6	$\mathbf{4 f}$	5	240	80
7	$\mathbf{4 g}$	6	230	65
8	$\mathbf{4 h}$	6	230	61
9	$\mathbf{4 i}$	7	240	72
$10[9]$	$\mathbf{1 a}$	24	180	$43(16)$
$11[9]$	$\mathbf{1 b}$	24	180	$8(91)$
$12[9]$	$\mathbf{1 c}$	24	180	$60(39)$

a) Conditions: without solvent, under vacuum.

5a-5c: 16-38\%). It is likely that partial decomposition occurred before the macrocyclic bis(benzoxazole)s were completely formed, since these macrocycles were heated at a high temperature $\left(210^{\circ} \mathrm{C}\right)$ for a long time. In contrast, the rearrangements of the meta- and para-substituted macrocycles 5d-5i quantitatively gave macrocyclic bis(benzoxazole) and macrocyclic dihydrobenzofuran as a simple mixture of two products (Scheme 3). These results were consistent with the trend of the total yields for the model compounds 1a-1c (total yield of the $\mathbf{2}+\mathbf{3}$ mixture: ortho, 59\%; meta, 99\%; para, 99\%).

Scheme 3

$\mathbf{4 a}$	$(o-, \mathrm{n}=1)$	$\mathbf{4 d}$	$(m-, \mathrm{n}=1)$	$\mathbf{4 g}$	$(p-, \mathrm{n}=1)$
$\mathbf{4 b}$	$(o-, \mathrm{n}=2)$	$\mathbf{4 e}$	$(m-, \mathrm{n}=2)$	$\mathbf{4 h}$	$(p-, \mathrm{n}=2)$
$\mathbf{4 c}$	$(o-, \mathrm{n}=3)$	$\mathbf{4 f}$	$(m-, \mathrm{n}=3)$	$\mathbf{4 i}$	$(p-\mathrm{n}=3)$

not be determined because the thermal reaction gave complex mixtures. It is noteworthy that the oligoethylene glycol chain length had almost no effect on the yield of 5 .

We expected the molecular shapes of the macrocyclic bis(benzoxazole)s, and hence the distances between the benzoxazole units, to vary with the type of linkage (ortho, meta, or para) and the length of the oligoethylene glycol moiety. Thus we investigated the influence of structure on the fluorescence properties by comparing the emission spectra and quantum yields of macrocycles $\mathbf{5 a - 5 i}$ with those of model compounds $\mathbf{2 a - 2 c}$.

The emission spectra of $\mathbf{2}$ and $\mathbf{5}$ were measured in $\mathrm{CHCl}_{3}(1$ $\left.\times 10^{-6} \mathrm{M}\right)$ at $25^{\circ} \mathrm{C}$. The fluorescence quantum yields were calculated with quinine sulfate in $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ as a reference (ϕ $=0.51$). Typical emission profiles are shown in Figure 1, and spectral data and quantum yields are summarized in Table 2.

Figure 1. Fluorescence spectra of $\mathbf{5 g}-\mathbf{5 i}$, and $\mathbf{2 c}$ in $\mathrm{CHCl}_{3}\left(1 \times 10^{-6}\right.$ M , at $25^{\circ} \mathrm{C}$)
[a] Conditions; Samples were measured in CHCl_{3} at $25^{\circ} \mathrm{C}$, and exited at 300 nm . The ϕ values were calculated with quinine sulfate in $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ as a reference, which has a quantum yield of 0.51 .

Table 2
Fluorescence Spectra[a]

Compound	$\lambda_{\max (\mathrm{ab})}$ (nm)	$\boldsymbol{\lambda}_{\max (\mathrm{fl})}$ (nm)	ϕ
$\mathbf{5 a}$	300,312	364	0.55
$\mathbf{5 b}$	300,313	364	0.51
$\mathbf{5 c}$	300,313	365	0.47
$\mathbf{5 d}$	303,314	353	0.33
$\mathbf{5 e}$	303,311	354	0.18
$\mathbf{5 f}$	302,311	354	0.18
$\mathbf{5 g}$	305,311	353	0.40
$\mathbf{5 h}$	305	357	0.18
$\mathbf{5 i}$	306	358	0.17
$\mathbf{2 a}$	317	363	0.51
$\mathbf{2 b}$	303,312	354	0.31
$\mathbf{2 c}$	306,314	356	0.55

The emission spectra of all model nonmacrocyclic and macrocyclic bis(benzoxazole)s showed structured emission with a strong fluorescence in the range $354-365 \mathrm{~nm}$ upon excitation at 300 nm (Figure 1, Table 2). Overall, there was no significant difference in the $\lambda_{\max (\mathrm{ab})}$ and $\lambda_{\max (\mathrm{fl})}$ values among the bis(benzoxazole) compounds with different substituted positions and oligoethylene glycol chain lengths; in compounds with the same substituted positions, the difference was especially small or there was no difference at all. Moreover, we could not confirm a peak for excimer formation between the two neighboring benzoxazoles in any of the spectra of the nonmacrocyclic or macrocyclic compounds. These results indicate that substituent position has little effect on the absorption and emission spectral shapes in spite of the proximity of the benzoxazoles in the various compounds. However, some tendencies for the fluorescence quantum yields were observed: (1) the quantum yields of the ortho- or para-substituted nonmacrocyclic 2a and 2c and macrocyclic bis(benzoxazole)s with triethylene glycol moieties 5a and $\mathbf{5 g}$ were higher than those of the meta-substituted compounds $\mathbf{2 b}$ and $\mathbf{5 d}$; (2) the quantum yield decreased as the length of the oligoethylene glycol chain increased, although for the ortho-substituted macrocycle the decrease was relatively small, whereas for the para-substituted macrocycle the decrease was large; (3) the yields of the macrocycles with the shortest chain, $\mathbf{5 a}, \mathbf{5 d}$, and $\mathbf{5 g}$, were almost the same as those of the corresponding nonmacrocyclic compounds, although for the para-substituted macrocycle, the difference $\left(\phi_{\mathbf{2 l}}-\phi_{\mathbf{2 g}}=0.15\right)$ was rather large.

For the nonmacrocyclic compounds, the difference in the emission efficiencies of a single benzoxazole is expected to dominate the difference in the quantum yields, since the two benzoxazoles are bound at the same position.

Kanegae et al. determined the quantum yields of several 2-phenylbenzoxazole derivatives and reported that the introduction of an electron-donating group in a resonance position on the phenyl ring hindered the torsional motion of the $\mathrm{C}-\mathrm{C}$ bond between the benzoxazole and the phenyl ring, resulting in an increase in the quantum yield [10]. In our case, torsional motion in the nonmacrocyclic bis(benzoxazole)s $2 \mathbf{a}$ and $\mathbf{2 c}$, which have methoxy groups at the ortho and para positions, might be hindered more effectively than in the meta-substituted compound $\mathbf{2 b}$, thereby increasing the quantum yield. The quantum yields of the ortho- and para-substituted macrocycles, 5a and 5g are also higher than that of the meta-substituted macrocycle 5e with triethylene glycol moiety, but this rule was not followed for macrocycles with longer chains, suggesting some other quenching mechanism.
${ }^{13} \mathrm{C}$ spin-lattice relaxation times $\left(T_{1}\right)$ of ortho- and parasubstituted macrocycles with tri- and pentaethylene glycol moieties, 5a, 5c,5g, and 5i, were measured to investigate how the molecular flexibility of the benzoxazole
unit contributes to the decrease in the quantum yield. The results are listed in Table 3.

Table 3						
	Relaxation times $\left(\mathrm{T}_{1}\right)$ of $\mathbf{5 a}, \mathbf{5 c}, \mathbf{5 g}$, and $\mathbf{5 i}$					
	$\mathrm{T}_{1}(\mathbf{5 a})(\mathrm{s})$	$\mathrm{T}_{1}(\mathbf{5 c})(\mathrm{s})$	$\mathrm{T}_{1}(\mathbf{5 g})(\mathrm{s})$	$\mathrm{T}_{1}(\mathbf{5 i})(\mathrm{s})$		
Ca	0.52	0.43	0.42	0.35		
Cb	0.57	0.47	0.55	0.50		

In both ortho- and para-substituted macrocycles, the T_{1} values of the macrocycles with the pentaethylene glycol moiety were smaller than those of the macrocycles with the triethylene glycol moiety, but the decrease in the T_{1} values for the ortho-substituted macrocycle due to the increase in the ethylene glycol chain length was greater than that for the para-substituted macrocycle. In general, the T_{1} values of the ${ }^{13} \mathrm{C}$ nuclei decrease with increasing molecular size and decreasing molecular flexibility [11]. Thus, the enhancement of molecular flexibility with increasing chain length is greater for the para-substituted macrocycle than for the ortho-substituted macrocycle. We may, therefore, reasonably conclude that the significant decrease in quantum yield for the para-substituted macrocycle is mainly caused by the enhancement of the radiationless process due to the ring. However, the quantum yield of $\mathbf{5 g}$ was lower than that of the model nonmacrocyclic compound 2c, whereas the quantum yields of $\mathbf{5 a}$ and $\mathbf{2 a}$ were almost equal even though the T_{1} value of $\mathbf{5 g}$ is smaller than the T_{1} value of $\mathbf{5 a}$. That is, the molecular flexibility of $\mathbf{5 g}$ is larger than that of 5a. Because of the close proximity of the two benzoxazole units in the para-substituted macrocycles, reabsorption and collisional quenching processes may also be involved in the quenching mechanism.

In conclusion, we have successfully synthesized new macrocyclic bis(benzoxazole) derivatives 5a-5i from novel macrocyclic bis(amide-ether) precursors via tandem Claisen rearrangement induced by heating under vacuum. During heating, tandem Claisen rearrangement at the isobutenyl bis(4-methylphenyl ether) units proceeded readily, followed by intramolecular cyclization between the newly generated phenol group and amide group, to give the macrocyclic bis(benzoxazole)s. The fluorescence quantum yields of the macrocyclic bis(benzoxazole)s (especially the para-substituted macrocycles) decreased with increasing length of the oligoethylene glycol chain. We concluded that the difference in the quantum yields was caused by the different molecular shapes of the macrocycles.

EXPERIMENTAL

Instrumentation.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a BrukerAF-500 spectrometer using tetramethylsilane (TMS) as an internal standard
in chloroform- $d\left(\mathrm{CDCl}_{3}\right)$ or dimethyl $-d_{6}$ sulfoxide (DMSO- d_{6}). IR spectra were obtained with a JASCO FT/IR 420. High-resolution mass spectra (HRMS) were recorded by an ESI-TOF mass spectrometer (PE Biosystems Mariner). UV and fluorescence spectra were obtained with JASCO V-550 and FP 750 spectrophotometers, respectively.

Synthesis of 1,3-Bis(2-amino-4-methylphenoxy)-2-methylenepropane Hydrochloride.
To a dispersion of 4-methyl-2-aminophenol ($5.0 \mathrm{~g}, 40.1 \mathrm{mmol}$) in $\mathrm{MeOH}(30 \mathrm{~mL})$ was added benzaldehyde ($4.3 \mathrm{~g}, 40.1 \mathrm{mmol}$), and the mixture was stirred for 5 hours at room temperature (rt). The mixture was filtered, and the solid protected-hydroxyarylamine obtained was dried in vacuo. The solid was dissolved in dry DMF (30 mL), and NaH (60% in oil, $2.0 \mathrm{~g}, 52.1 \mathrm{mmol}$) and 3-chloro-2-(chloromethyl)propene ($251 \mathrm{~g}, 20.1 \mathrm{mmol}$) were added to the solution. The reaction mixture was stirred overnight at $70{ }^{\circ} \mathrm{C}$. The solvent was removed under vacuum, and the residue was dissolved in CHCl_{3} and washed with water. After half of the solvent was removed, 12 N HCl was added to the solution at rt . The precipitate obtained was collected by filtration and washed three times with acetone.

1,3-Bis(2-amino-4-methylphenoxy)-2-methylenepropane Hydrochloride.
This compound was obtained as a colorless solid, yield 82%; mp 100.7-102.0 ${ }^{\circ} \mathrm{C}$: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\right.$), $4.82\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 7.12-7.13(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar})$, 7.23 (s, 2H, Ar), 10.12 (br s, 6H, $-\mathrm{NH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}): $\delta 20.36,68.97,113.68,116.20,121.06,124.47,129.34,130.41$, 139.51, 149.17; IR (KBr): 3398, 1637, 1508, $1273 \mathrm{~cm}^{-1}$.

General Procedure for Preparation of 1,3-Bis[2-[(hydroxyben-zoyl)amino]-4-methylphenoxy]-2-methylenepropane.

To a solution of 1,3-bis(2-amino-4-methylphenoxy)-2-methylenepropane hydrochloride and pyridine in dry DMF at $0^{\circ} \mathrm{C}$ was added a solution of o-, m-, or p-acetoxybenzoyl chloride in dry DMF. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and at rt for 3 hours. The DMF was then removed under vacuum from the reaction mixture, and the residue was dissolved in CHCl_{3}. The solution was washed three times with water and then dried over anhydrous MgSO_{4}. After evaporation of the solvent, the residue was purified by silica gel column chromatography (eluent: chloroform) to give 1,3 -bis[2-[(acetoxybenzoyl)amino]-4-methylphe-noxy]-2-methylenepropane. The resulting ester derivative was hydrolyzed in $1 N \mathrm{NaOH}$ (aq)-methanol solution at room temperature for 12 hours. After the reaction, $1 N \mathrm{HCl}$ aqueous solution was added to neutralize the mixture and precipitate 1,3 -bis[2-[(hydroxybenzoyl)amino]-4-methylphenoxy]-2-methylenepropane. The precipitate was collected by filtration, washed with water, and dried in vacuo.

1,3-Bis[2-[(2-hyroxybenzoyl)amino]-4-methylphenoxy]-2-methylenepropane.
This compound was obtained as a colorless solid, yield 54%, mp 115.9-116.8 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.25$ ($\mathrm{s}, 6 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{Ar}$), 4.78 ($\mathrm{s}, 4 \mathrm{H},-\mathrm{CH}_{2}-$), $5.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right.$), 6.77 (d, $J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.99(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.05$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.23$ (s, 2H, Ar), 10.66 ($\mathrm{s}, 2 \mathrm{H}$, $-\mathrm{NH}-$), 11.62 (br s, $2 \mathrm{H},-\mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.63$,
68.66, 111.94, 115.22, 116.99, 118.70, 119.67, 121.59, 124.15, 127.61, 129.60, 130.71, 133.37, 139.80, 145.56, 156.34, 163.54; IR (KBr): 3427, 3313, 1629, 1593, 1543, 1489, $1236 \mathrm{~cm}^{-1}$.

1,3-Bis[2-[(3-hyroxybenzoyl)amino]-4-methylphenoxy]-2-methylenepropane.

This compound was obtained as a colorless solid, yield 52%, mp 148.6-149.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.24$ ($\mathrm{s}, 6 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{Ar}$), 4.68 ($\mathrm{s}, 4 \mathrm{H},-\mathrm{CH}_{2}-$), $5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right.$), 6.85 (dd, $J_{1}=$ $\left.8.4, J_{2}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.96$ (dd, $\left.J_{1}=8.0, J_{2}=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right), 7.25(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $7.32-7.35$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}$), 7.53 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 9.33 (s, 2H, $\left.{ }^{-N H}-\right), 9.76$ (br s, $2 \mathrm{H},-\mathrm{OH}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 21.32,68.44$, $112.49,114.18,114.39,117.68,118.53,125.26,125.98,126.75$, 129.30, 129.54, 135.99, 140.33, 148.39, 157.51, 164.93; IR (KBr): $3419,3282,1654,1593,1540,1481,1253 \mathrm{~cm}^{-1}$.

1,3-Bis[2-[(4-hyroxybenzoyl)amino]-4-methylphenoxy]-2-methylenepropane.

This compound was obtained as a colorless solid, yield 59%, mp 205.8-206.7 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.25$ ($\mathrm{s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{Ar}\right), 4.68\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.34\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.81(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.81(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.91(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.56 (d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.79$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 9.19$ (s, $2 \mathrm{H},-\mathrm{NH}-), 10.10$ (br s, 2H, -OH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 20.36$, $68.52,112.45,125.05,125.59,127.09,129.35,140.38,148.21$, 160.54, 164.52; IR (KBr): 3430, 3261, 1652, 1604, 1539, 1514, $1252 \mathrm{~cm}^{-1}$.

General Procedure for Preparation of Macrocyclic Isobutenyl Bis(amide-aryl ether)s (4).

To a solution of 1,3-bis[2-[(hydroxybenzoyl)amino]-4-methylphenoxy]-2-methylenepropane ($1.99 \mathrm{~g}, 3.7 \mathrm{mmol}$) and triethylene glycol ditosylate ($1.70 \mathrm{~g}, 3.7 \mathrm{mmol}$) in dry DMF (400 $\mathrm{mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.2 \mathrm{~g}, 16 \mathrm{mmol})$, and the mixture was heated at $70{ }^{\circ} \mathrm{C}$ for3 days. The mixture was evaporated, the residue was dissolved in CHCl_{3}, and the solution was washed with water. After evaporation of the solvent, the residue was purified by column chromatography on silica gel (eluent: 4:1 CHCl_{3} :ethyl acetate) to give 4.
Macrocyclic isobutenyl bis(amide-aryl ether) (4a, $o-, n=1$).
This compound was obtained as a colorless solid, yield 57%, mp 145.6-146.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.30\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.52\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right.$), $3.79\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.22$ ($\left.\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.84\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.42(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 6.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, $6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.45(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar})$, 10.24 (br s, $2 \mathrm{H},-\mathrm{NH}-$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.98,68.80$, 68.87, 69.33, 70.94, 111.94, 113.34, 115.82, 121.94, 122.36, 122.97, 124.16, 128.21, 131.02, 132.62, 132.87, 140.81, 145.57, 156.21, 163.26; IR (KBr): 3341, 1662, 1596, 1542, 1480, 1230 cm^{-1}; HRESIMS $m / z 653.2862(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8}$ 653.2863.

Macrocyclic Isobutenyl bis(amide-aryl ether) (4b, $o-, n=2$).
This compound was obtained as a colorless solid, yield 53%, mp 148.8-149.9 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.29$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}$), $3.45-3.50\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.56-3.62\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right)$, $3.89\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.29(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H}$,
$\left.-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.86\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.65(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.14(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.46(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 8.29 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.39$ (s, 2H, Ar), 10.30 (br s, 2H, $\left.{ }^{-N H}-\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.00,68.96,69.15,69.46,70.79$, 111.91, 113.39, 121.84, 122.14, 122.94, 124.14, 128.17, 130.93, 132.57, 132.88, 140.94, 145.59, 156.44, 163.21; IR (KBr): 3353, 1660, 1596, 1541, 1480, $1232 \mathrm{~cm}^{-1}$; HRESIMS m/z 697.3162 (M $+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{9} 697.3124$.

Macrocyclic isobutenyl bis(amide-aryl ether) (4c, $o-, n=3$).
This compound was obtained as a colorless solid, yield 32%, $\mathrm{mp} 137.0-138.1^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.47-3.50\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.58\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right)$, $3.87\left(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.30(\mathrm{t}, \mathrm{J}=4.9 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.81\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.66(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.77$ (d, J = $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.01(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.14$ (t, J = $=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.46$ (t, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 8.27 (d, J = $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 8.36 (s, 2H, Ar), 10.25 (br s, 2 H , $\left.{ }^{-N H}-\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 20.98,69.03,69.10,69.36,70.66$, 70.81, 111.84, 113.79, 116.27, 121.93, 122.18, 123.08, 124.16, 128.06, 130.91, 132.45, 132.89, 140.58, 145.64, 156.47, 163.21; IR (KBr): 3359, 1659, 1596, 1540, 1480, $1235 \mathrm{~cm}^{-1}$; HRESIMS $\mathrm{m} / \mathrm{z} 741.3393(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{10} 741.3387$.
Macrocyclic Isobutenyl Bis(amide-aryl ether) (4d, $m-, n=1$).
This compound was obtained as a colorless solid, yield 44%, mp 156.3-157.0 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 2.33$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}$), $3.72\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.82\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.13$ ($\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-$), $4.71\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right.$), $5.43(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.02 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.22(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.29(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{Ar}), 7.32$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 8.23 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}$), 8.40 (br s, $2 \mathrm{H},-\mathrm{NH}-)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.05,67.72,69.82,70.17$, 71.10, 112.13, 112.83, 116.80, 118.36, 119.30, 120.97, 124.24, 127.94, 129.81, 131.70, 136.57, 139.95, 145.03, 159.00, 165.17; IR (KBr): 3437, 1671, 1584, 1537, 1475, $1254 \mathrm{~cm}^{-1}$; HRESIMS $m / z 653.2910(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8} 653.2863$.

Macrocyclic Isobutenyl Bis(amide-aryl ether) (4e, $m-, n=2$).
This compound was obtained as a colorless solid, yield 37%, $\mathrm{mp} 134.5-135.3{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.32(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3}-\mathrm{Ar}\right), 3.62-3.70\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.80(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-$), $4.10\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right.$), $4.71(\mathrm{~s}, 4 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\right), 5.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.82$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.01$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.22$ (t, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.30-7.37$ (m, 4H, Ar), 8.29 (s, 2H, Ar), 8.44 (br s, $2 \mathrm{H},-\mathrm{NH}-$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.04,67.69,69.61$, 70.03, 70.74, 70.87, 112.01, 112.92, 116.89, 118.29, 119.06, $120.94,124.23,127.89,129.79,131.63,136.54,139.92$, 144.99, 159.06, 165.07; IR (KBr): 3432, 1674, 1593, 1532, 1481, $1281 \mathrm{~cm}^{-1}$; HRESIMS $m / z 697.3149(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{9} 697.3124$.
Macrocyclic Isobutenyl Bis(amide-aryl ether) (4f, $m-, n=3$).
This compound was obtained as a colorless solid, yield 26%, mp 104.7-105.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, 3.62 (s, 4H, $-\mathrm{O}-\mathrm{CH}_{2}-$), $3.63-3.67\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right.$), 3.79 (t, $\left.J=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.10\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right)$, 4.72 (s, 4H, $-\mathrm{CH}_{2}-$), 5.43 (s, 2H, CH2 $=$), $6.79-6.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar})$, $7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.23(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$,
7.32-7.35 (m, 4H, Ar), 8.27 (s, 2H, Ar), 8.43 (br s, 2H, -NH-); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.03,67.62,69.51,69.89,70.61,70.65$, $70.88,111.90,112.92,116.88,118.15,119.06,120.94,124.23$, $127.85,129.80,131.58,136.49,139.83,144.96,159.03,164.98$; IR (KBr): 3428, 1656, 1586, 1537, 1481, $1287 \mathrm{~cm}^{-1}$; HRESIMS $\mathrm{m} / \mathrm{z} 741.3382(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{10} 741.3387$.

Macrocyclic Isobutenyl Bis(amide-aryl ether) ($\mathbf{4 g}$, $p-, n=1$).
This compound was obtained as a colorless solid, yield $49 \%, \mathrm{mp}$ 193.2-194.7 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 2.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right), 3.75$ ($\mathrm{s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-$), $3.91\left(\mathrm{t}, J=4.6 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.18(\mathrm{t}, J=$ $\left.4.6 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.70\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right)$, 6.79 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, ~ A r), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.00(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.85(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 8.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar})$, 8.51 (br s, 2H, -NH-); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.04,67.65,69.29$, 69.47, 70.93, 111.26, 114.31, 114.61, 120.66, 123.83, 127.47, 127.91, 128.70, 131.54, 139.40, 144.75, 161.79, 164.48; IR (KBr): 3438, 1663, 1605, 1540, 1512, 1481, $1254 \mathrm{~cm}^{-1}$; HRESIMS m / z $653.2884(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8} 653.2863$.
Macrocyclic Isobutenyl Bis(amide-aryl ether) ($\mathbf{4 h}, p-, n=2$).
This compound was obtained as a colorless solid, yield 35%, mp 206.0-210.2 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.34$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}$), $3.69-3.74\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.89(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}$, $-\mathrm{O}-\mathrm{CH}_{2}-$), $4.15\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.71(\mathrm{~s}, 4 \mathrm{H}$, $-\mathrm{CH}_{2}-$), $5.45\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.80(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.85(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.96(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.82(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 4 \mathrm{H}, \mathrm{Ar}$), 8.38 (s, 2H, Ar), 8.48 (br s, 2H, -NH-); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.06,67.78,69.50,69.66,70.84,70.92,111.59$, 114.64, 115.28, 120.80, 123.90, 127.48, 128.00, 128.69, 131.64, 139.61, 144.81, 161.74, 164.61; IR (KBr): 3435, 1662, 1606, 1540, 1511, 1482, $1254 \mathrm{~cm}^{-1}$; HRESIMS m/z 697.3144 ($\mathrm{M}+$ $\mathrm{H})^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{9}$ 697.3124.
Macrocyclic Isobutenyl Bis(amide-aryl ether) (4i, $p-, n=3$).
This compound was obtained as a colorless solid, yield 35%, mp 179.0-180.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.34\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.66\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.67-3.69\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.62-3.70$ ($\left.\mathrm{m}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.87\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.14(\mathrm{t}, J$ $\left.=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.72\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 5.46(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=$), $6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 6.93 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.79$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.38$ (s, $2 \mathrm{H}, \mathrm{Ar}), 8.47$ (br s, $2 \mathrm{H},-\mathrm{NH}-$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.07$, $67.73,69.54,69.78,70.74,70.79,70.94,111.78,114.68,119.71$, 120.77, 123.91, 127.42, 128.10, 128.64, 128.74, 131.71, 144.83, 161.72, 164.63; IR (KBr): 3431, 1654, 1605, 1540, 1513, 1252 cm^{-1}; HRESIMS $\mathrm{m} / \mathrm{z} 741.3352(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{10} 741.3387$.

General Procedure for Preparation of 5a-c by Thermal Reaction of $\mathbf{4 a - c}$.

Typical Procedure 4a.

Compound $4 \mathbf{a}(0.06 \mathrm{~g}, 0.092 \mathrm{mmol})$ was heated at $210^{\circ} \mathrm{C}$ for 2 days under vacuum. The crude mixture was purified by silica gel chromatography (eluent: $2: 1$ chloroform:ethylacetate) to give $\mathbf{5 a}$.

Macrocyclic Bis(benzoxazole) (5a).

This compound was obtained as acolorless solid, yield 20%, $\mathrm{mp} 227.0-228.5^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.70\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.71\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.81(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.19\left(\mathrm{t}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.00(\mathrm{~s}, 2 \mathrm{H}$,
$\mathrm{CH}_{2}=$), $6.88(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.07(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.45\left(\mathrm{dt}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=1.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.11\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}): $\delta 21.49,36.15,69.02,69.70,70.86,113.11$, 114.62, 116.99, 117.62, 120.99, 121.87, 126.46, 131.64, 132.53, 134.16, 141.50, 144.82, 148.54, 157.53, 162.70; IR (KBr): 1610, $1500,1258 \mathrm{~cm}^{-1}$; HRESIMS $m / z 617.2699(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6} 617.2651$.
Macrocyclic Bis(benzoxazole) (5b).
This compound was obtained as a colorless solid, yield 38%, $\mathrm{mp} 146.1-146.9^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.43-3.45\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.49-3.50\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right)$, $3.70\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.78\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.18(\mathrm{t}$, $\left.J=4.6 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar})$, $6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.05(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 8.03\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=\right.$ $1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.44,36.14,68.76$, $69.48,70.26,70.91,113.16,114.85,116.93,117.69,120.88$, 121.92, 126.55, 128.55, 129.53, 131.45, 132.43, 134.02, 141.71, $144.69,148.17,157.52,162.25$; IR (KBr): 1602, 1582, 1533, 1478, 1449, $1266 \mathrm{~cm}^{-1}$; HRESIMS $\mathrm{m} / \mathrm{z} 661.2907(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7} 661.2913$.
Macrocyclic Bis(benzoxazole) (5c).
This compound was obtained as a colorless solid, yield 16%, $\mathrm{mp} 46.6-48.0{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.43\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.48\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.59(\mathrm{t}$, $\left.J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.68\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.81(\mathrm{t}, J=5.1$ $\left.\mathrm{Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.20\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.07(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2}=$), 6.94 (s, 2H, Ar), 6.99 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.02 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.39(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.41\left(\mathrm{dt}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=\right.$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.98\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.46,36.25,68.82,69.58,70.52,70.93$, 113.36, 114.54, 116.90, 117.75, 120.91, 121.93, 126.62, 131.32, 132.39, 134.00, 141.78, 145.00, 148.05, 157.55, 162.06; IR (KBr): 1602, 1583, 1538, 1480, $1451 \mathrm{~cm}^{-1}$; HRESIMS m / z $705.3160(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8} 705.3176$.
General Procedure for Preparation of $\mathbf{5 d} \mathbf{- i}$ by Thermal reaction of $\mathbf{4 d - i}$.
Typical Procedure 4d
Compound $4 \mathbf{d}(0.06 \mathrm{~g}, 0.092 \mathrm{mmol})$ was heated at $240^{\circ} \mathrm{C}$ for 5 hours under vacuum. The crude mixture was purified by gel permeation chromatography (GPC, eluent: chloroform) to obtain a mixture of $5 \mathbf{d}$ and $\mathbf{6 d}$, and the product ratio was determined by ${ }^{1} \mathrm{H}$ NMR spectrum. Then, the mixture was purified by silica gel chromatography (eluent: 4:1 chloroform:ethyl acetate) to give $\mathbf{5 d}$.

Macrocyclic Bis(benzoxazole) (5d).
This compound was obtained as a colorless solid, yield 72%, mp 186.9-187.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.44\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, 3.63 (s, 4H, $-\mathrm{CH}_{2}-$), $3.82\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 3.92(\mathrm{t}, J=4.8 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.15\left(\mathrm{t}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.15(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2}=$), $6.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.26(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.32$ (s, 2H, Ar), 7.44-7.47 (m, 4H, Ar); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.53,36.02,67.64,69.71,71.16,112.31$, 114.76, 117.78, 118.34, 119.98, 121.86, 126.57, 128.15, 129.70, 134.23, 141.91, 145.06, 147.89, 158.84, 162.44; IR (KBr): 1587, 1556, 1487, 1452, $1289 \mathrm{~cm}^{-1}$; HRESIMS $m / z 617.2661$ ($\mathrm{M}+$ $\mathrm{H})^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6}$ 617.2651.

Macrocyclic Bis(benzoxazole) (5e).
This compound was obtained as a colorless solid, yield 71%, mp 143.5-144.5 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.43$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}$), 3.62 (s, 4H, $-\mathrm{CH}_{2}-$), 3.77 (m, 8H, $-\mathrm{CH}_{2} \mathrm{O}-$), 3.93 (t, $J=4.7 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.10\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.18(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.21(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.31$ (s, 2H, Ar), 7.33-7.38 (m, 4H, Ar); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.54,35.89,67.75,69.73,70.80,71.08$, $111.89,114.99,117.77,118.69,119.80,121.87,126.50,128.09$, 129.66, 134.23, 141.86, 145.08, 147.89, 158.85, 162.50; IR (KBr): 1588, 1554, 1484, $1232 \mathrm{~cm}^{-1}$; HRESIMS $m / z 661.2935$ $(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7} 661.2913$.

Macrocyclic Bis(benzoxazole) (5f).

This compound was obtained as a colorless solid, yield 80%, mp 102.5-104.0 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.42\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.61\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right.$), $3.72\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-\right), 3.75-3.77(\mathrm{~m}, 8 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{O}-\right), 3.91\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.11(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.18\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.93(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 6.95(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.32$ (d, $J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{Ar}), 7.34$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}$), 7.35 (s, 2H, Ar); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.51,35.85,67.63,69.69,70.79,70.89,70.93$, $112.05,114.99,117.75,118.52,119.75,121.88,126.51,128.01$, 129.66, 134.23, 141.83, 145.08, 147.87, 158.73, 162.52; IR (KBr): 1585, 1553, 1486, $1455 \mathrm{~cm}^{-1}$; HRESIMS $m / z 705.3179$ $(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8} 705.3176$.
Macrocyclic Bis(benzoxazole) (5g).
This compound was obtained as a colorless solid, yield 65%, $\mathrm{mp} 219.5-221.7^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, $3.70\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.79\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.90(\mathrm{t}, J=4.6 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.08\left(\mathrm{t}, J=4.5 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.04(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}=\right), 6.75(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 6.87(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}), 7.24(\mathrm{~s}, 2 \mathrm{H}$, Ar), 7.87 (d, $J=8.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.47$, 37.32, 67.72, 69.53, 71.18, 114.65, 114.81, 117.47, 119.79, 121.76, 126.31, 128.92, 129.25, 133.93, 142.00, 144.70, 147.66, 161.18, 162.91; IR (KBr): 1610, $1500,1258 \mathrm{~cm}^{-1}$; HRESIMS $\mathrm{m} / \mathrm{z} 617.2567(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{38} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{6} 617.2651$.
Macrocyclic Bis(benzoxazole) (5h).
This compound was obtained as a colorless solid, yield 61%, mp 248.2-248.9 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.40(\mathrm{~s}, 6 \mathrm{H}$, $\mathrm{CH}_{3}-\mathrm{Ar}$), 3.67 (s, $4 \mathrm{H},-\mathrm{CH}_{2}-$), 3.94 ($\mathrm{s}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{O}-$), 5.05 (s , $2 \mathrm{H}, \mathrm{CH}_{2}=$), 6.95 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Ar}$), 7.01-7.04 (m, 4H, Ar), 7.43-7.45 $(\mathrm{m}, 4 \mathrm{H}, \mathrm{Ar}), 7.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 21.08,67.80,69.52,69.68,70.86,70.94,111.61,114.66$, $115.04,115.29,120.82,123.93,127.50,128.02,128.71$, 131.66, 139.64, 144.84, 161.76, 164.63; IR (KBr): 1611, 1500, $1258 \mathrm{~cm}^{-1}$; HRESIMS $m / z 661.2908(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{40} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{7} 661.2913$.
Macrocyclic Bis(benzoxazole) (5i).
This compound was obtained as a colorless solid, yield 72%, mp 169.4-171.8 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.41\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Ar}\right)$, 3.65 (s, 4H, $-\mathrm{CH}_{2}-$), $3.72\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right.$), $3.74-3.77(\mathrm{~m}, 8 \mathrm{H}$, $\left.-\mathrm{O}-\mathrm{CH}_{2}-\right), 3.92\left(\mathrm{t}, J=5.2 \mathrm{~Hz}, 4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 4.07(\mathrm{t}, J=5.0 \mathrm{~Hz}$, $\left.4 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{2}-\right), 5.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}=\right), 6.72(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar})$, 6.91 (s, 2H, Ar), 7.27 (s, 2H, Ar), 7.87 (d, $J=8.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.50,36.64,67.64,69.63,70.81,70.95$, $71.04,114.58,114.76,117.46,119.76,121.78,126.16,128.81$, 133.99, 142.06, 145.03, 147.73, 161.07, 162.82; IR (KBr): 1611,

1501, $1257 \mathrm{~cm}^{-1}$; HRESIMS $\mathrm{m} / \mathrm{z} 705.3201(\mathrm{M}+\mathrm{H})^{+}$, calcd for $\mathrm{C}_{42} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{8} 705.3176$.

REFERENCES AND NOTES

* Author to whom all correspondence should be addressed. Fax: +81-298-61-3029. E-mail: k.hiratani@aist.go.jp.
[1] U. Claussen and H. Harnisch, Eur. Pat. Appl., 25, 136 (1981).
[2] S. Stendby, Surf. Sci. Ser., 5, 729 (1981).
[3a] Comprehensive Organic Synthesis; B. M. Trost, I. Fleming, C. H. Heathcock, Eds.; Pergamon Press: New York, Vol. 2 (1991); [b] A. Reser, L. J. Leyshon, D. Saunders, M. V. Mijovic, A. Bright and J. Bogie, J. Am. Chem. Soc., 94, 2414 (1972).
[4a] J. Roussilhe, B. Despax, A. Lopez and N. Pailous, J. Chem. Soc., Chem. Commun., 380 (1982); [b] J. Roussilhe, E. Fargin, A. Lopez, B. Despax and B N. Pailous, J. Org. Chem., 48, 3736 (1983); [c] S. Fery-Forgues and N. Pailous, J. Org. Chem., 51, 672 (1986); [d] I. N. Houpis, A. Molina, J. Lynch, R. A. Reamer, R. P. Volante and P. J. Reider, J. Org. Chem., 58, 3176 (1993); [e] V. Dryanska and Chr. Ivanov, Synthesis, 37 (1976).
[5a] D. A. Evans, C. E. Sacks, W. A. Kleschick and T. R. Taber, J. Am. Chem. Soc., 101, 6789 (1979); [b] I. N. Houpis, A. Molina, J.

Lynch, R. A. Reamer, R. P. Volante and P. J. Reider, J. Org. Chem., 58, 3176 (1993); [c] S. B. Advani and J. Sam, J. Pharm. Sci., 57, 1693 (1968); [d] J. M. Kay, P. Smith, D. Heath, and J. A. Will, Cardiovasc. Res., 10, 200 (1976); [e] J. Badin and B. Tinland, Res. Commun. Chem. Pathol. Pharmacol., 6, 1099 (1973); [f] D. W. Dunwell, and D. Evans, J. Med. Chem., 20, 797 (1977); [g] Y. Sato, M. Imai, K. Amano, K. Iwamatsu, F. Konno, Y. Kurata, S. Sakakibara, M. Hachisu, M. Izumi, N. Matsuki and H. Saito, J. Med. Chem., 41, 3015 (1998).
[6a] F. Weiss and A. Isard, Bull. Soc. Chim. Fr., 6, 2033 (1967); [b] B. S. Tyhagarajan, K. K. Balasubramanian and R. B Rao, Chem. Ind. (London), 401 (1967).
[7a] K. Hiratani, K. Kasuga, M.Goto and H. Uzawa, J. Am. Chem. Soc., 119, 12677 (1997); [b] K. Hiratani, T. Takahashi, K. Kasuga, H. Sugihara, K. Fujiwara and K. Ohashi, Tetrahedron Lett., 36, 5567 (1995); [c] K. Hiratani, H. Uzawa, K. Kasuga and H. Kambayashi, Tetrahedron Lett., 38, 8993 (1997).
[8] E. Koyama, G. Yang and K. Hiratani, Tetrahedron Lett., 41, 8111 (2000).
[9] E. Koyama, G. Yang, S. Tsuzuki and K.Hiratani, Submitted.
[10] Y. Kanegae, K. Peariso and S. S. Martinez, Appl. Spectrosc., 50, 316 (1996).
[11] E. Breitmaier and W. Voelter, Carbon-13 NMR Spectroscopy, VCH, Weinheim, Germany 1990, pp163-182.

